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Table 1. Tandem RCM-Hydrogenation Reactions Catalyzed by
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Organometallic catalysts are traditionally designed and opti- E:ZE2 1.:1 (?;3;)6 802/0
mized to mediate a single reactibrHowever, the increasing 3 )/j\ Q 1 1000 psi®
demand for expedient and efficient synthetic processes requires 7
the development of organometallic reagents that are capable of 15, E{=E,=COEt 6, (90%) 17, (70%)°
catalyzing multiple, mechanistically distinct reactions directly or
by simple modification. While the Ru complex (PgyCl,Ru= 4 K*@’;\ m 2 1am
CHPh ()? has found extensive use in olefin metathéstsyas
also recently shown to be an effective precatalyst for mediating 18, (100%) (90%)
radical addition$ and hydrogenation reactiohsWe recently
demonstrated all three reactions could be performed in tandem 5 K‘ j (D/Q O/Q 1 1000 psi®
to afford well-defined block copolymefserein, we report that
complex 1, or its more active derivativ®,” is also useful in 22, (100%) 2, (93%)
mediating a variety of other catalytic hydrogenation reactions that Q Q @ _
include regiospecific ketone and olefin reductions, transfer \H)LO \@ \@ 2 100psi
hydrogenations of ketones, and dehydrogenative oxidations of NUEN
alcohols. In addition, we demonstrate a variety of “one-pot” 2 25 (75%) 26, (64%)
tandem metathesidhydrogenation procedures for the rapid 2 J\ 2 ,
construction of small molecules, including)¢(—)-Muscone. ﬁb d /Q N/k 2 100ps
27 28, (90%) 29, (85%)
o lﬁ'\ /a TC& 600 psi

PCy, crY l

1 2
Figure 1. First and second generation ruthenium alkylidenes.

Addition of H, (1 atm, 25°C) to complex1 quantitatively
afforded the hydride complex RUHCI§HPCys),,2 an effective
hydrogenation cataly8t The same Ru hydride complex was
observed upon the introduction of,Hollowing a ring-closing

o]
s *W ' =
31 (90%) 2, (84%)

a2 Reactions conditions: -35 mol % catalystl or 2, 40 °C
(metathesis) and 7 (hydrogenation), 0.1 M substrate in CIZEH,CI.
bDetermined by GC¢lsolated yield based on starting substrate.
dReaction was performed under dilute conditions (see Supporting
Information).® Hydrogenation was conducted at 180.

catalysis protocol.Upon the conclusion of the metathesis reaction

metathesis (RCM) or cross-metathesis (CM) reaction. Thus, as(performed at 40C), the reaction vessel was simply pressured
shown in Tables 1 and 2, excellent yields of various saturated with hydrogen and then heated to 70. The order of olefin
products were obtained by using a convenient, “one-pot” tandem reactivity appeared to follow the general trend eistrans >
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conjugated> trisubstituted, and permitted the regioselective
hydrogenation of substrate9d (Table 1, entry 4). In some cases
(Table 1, entries 2 and 8), higher pressures were employed to
achieve acceptable reaction rates under the relatively dilute
conditions necessary for the olefin metathesis reaction. Impor-
tantly, the Ru catalyst tolerated a wide range of functional groups
without any noticeable loss in activity. In addition, the catalyst
did not facilitate the hydrodehalogenation of aryl halides (Table
2, entry 4), which is a common drawback of many hydrogenation
procedures. Overall, this “one pot”, tandem Ru-catalyzed me-
tathesis-hydrogenation approach is much more convenient than
standard procedures where Pd/C or Rh hydrogenation catalysts
are used after the olefin metathesis product has been iséfated.
Noyori has developed powerful diamine-coordinated Ru com-
plexes for the regioselective hydrogenation of ketones in the
presence of olefin&: Similarly, we found that complexekor 2

(9) Under relatively low pressures of;}thlorinated solvents (Ci€I, or
CICH,CH,CI) appeared to be critical for successful hydrogenation as only
isomerization was observed in aromatic solvents.
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Table 2. Tandem CM-Hydrogenation Reactions Catalyzed by (e.g., ketones), remains a useful protocol for reducing ketones
or2? (and olefins) and oxidizing alcohols. We found that omplekes
Metathesis Product  Tandem Product and2 were also effective transfer hydrogenation precatalysts.
Entry Substrates (% Conversion)® (% Yield)® As shown in eq 1, following the RCM of ketorie, simply adding
1 a0~ one YTPh e AP Aco P
K2C03
33, (90%) 34, (82%)
T = O O
(o] =
2 IYASENG § Acow Acoﬁéj\ 60‘7
35, (85%) 36, (77%) OH ’
A o i i OH ol
NaOH
3 @/\ L @/\)\ . 2. CON;’ACONQ)
o . ACOW\ 89% 4 @) 4
37, (85%) 38, (80%) 4 1 P 35

(o]
R o] 86%
/©/\ A > "OMe OMe ’
cl OMe o

29, (92%) S %0, G0%) excess bhase (e.g..80; or NaOH)® and 2-propanol selectively
: : afforded the unsaturated alcoh in 56% overall yield from
a Reaction conditions: 3 mol % catalystor 2, 40 °C (metathesis) 12 S]mllarly, transfer dehydrogenation of the allyl alcok .
and 70°C (hydrogenation, 100 psi 0.1 M substrate in CICKCH,CI. (obtained via CM of 3-buten-2-ol and 5-acetoxy-1-hexene) with

b Determined by GC¢ Isolated yield based on starting substrate. 3-pentanone and NaOH afforded-unsaturated keton&5 in
77% vyield over the two steps (eq 2).

were also excellent catalysts for regiospecific ketone reductions As shown in Scheme 2, the tandem catalytic reactions
upon the addition of ethylenediamit®€Thus, as shown in Scheme  developed above were combined for a “one-pot” synthesiR)f (

1, the “one-pot” tandem metathesisydrogenation procedure was  (—)-Muscone, a natural product with a desirable fragrdfice.
extended to include regiospecific ketone reductions. Following Following RCM of the readily available dier5,*° the addition
the CM of styrene with methyl vinyl ketone, the addition of of 3-pentanone and NaOH initiated the (Ru catalyzed) transfer
ethylenediamine (1.1 equiv/Ru), NaOH (5 equiv/Ru), andH dehydrogenation of the resulting alcohdbf and afforded the
atm, balloon) quantitatively afforded the corresponding allyl macrocyclic ketone4?. Finally, the addition of H gave R)-
alcohol41 after 12 h (25°C). No trace of olefin saturation was  (—)-Muscone in 56% overall yield from5.

observed. Alternatively, reduction of both the olefin and the ketone ; )

was obtained by applying these conditions after the tanderrCM  Scheme 2.A “One-Pot’/Three (Ru catalyzed)-Step Synthesis
hydrogenation procedure described above to afford the secondany’ (R~ ) Muscone

alcohol42 in moderate yield (30%} OH

o
Scheme 1.Tandem Ru-Catalyzed Reactiéns 2 NaOH,\)J\/
(e} e} RCM Transfer
2 N A 74% Dehydrogenation
R - — 76%
sl 8% 37 100% 38
100%1 B 30%1 B o]
OH OH
S A
H“@ 0% 42 Hydrogenation
aSee Table 2 for the synthesis®7. Method A: H (100 psi), 70°C, 100%
10 h. Method B: HN(CH,)2NH> (1.1 equiv/Ru), NaOH (5 equiv/Ru), (R)-(-)-Muscone

i-PrOH, H (1 atm), 25°C, 12 h.
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